7,084 research outputs found

    Software Design with the Rapid Prototyping Approach

    Get PDF

    Spectral methods for partial differential equations

    Get PDF
    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized

    The spt-Crank for Ordinary Partitions

    Full text link
    The spt-function spt(n)spt(n) was introduced by Andrews as the weighted counting of partitions of nn with respect to the number of occurrences of the smallest part. Andrews, Garvan and Liang defined the spt-crank of an SS-partition which leads to combinatorial interpretations of the congruences of spt(n)spt(n) mod 5 and 7. Let NS(m,n)N_S(m,n) denote the net number of SS-partitions of nn with spt-crank mm. Andrews, Garvan and Liang showed that NS(m,n)N_S(m,n) is nonnegative for all integers mm and positive integers nn, and they asked the question of finding a combinatorial interpretation of NS(m,n)N_S(m,n). In this paper, we introduce the structure of doubly marked partitions and define the spt-crank of a doubly marked partition. We show that NS(m,n)N_S(m,n) can be interpreted as the number of doubly marked partitions of nn with spt-crank mm. Moreover, we establish a bijection between marked partitions of nn and doubly marked partitions of nn. A marked partition is defined by Andrews, Dyson and Rhoades as a partition with exactly one of the smallest parts marked. They consider it a challenge to find a definition of the spt-crank of a marked partition so that the set of marked partitions of 5n+45n+4 and 7n+57n+5 can be divided into five and seven equinumerous classes. The definition of spt-crank for doubly marked partitions and the bijection between the marked partitions and doubly marked partitions leads to a solution to the problem of Andrews, Dyson and Rhoades.Comment: 22 pages, 6 figure

    Spectral multigrid methods with applications to transonic potential flow

    Get PDF
    Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil

    Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions

    Full text link
    The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α>0\alpha > 0, corresponding to the elastic response, and ν>0\nu > 0, corresponding to viscosity. Formally setting these parameters to 00 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits α,ν→0\alpha, \nu \to 0 of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler-α\alpha model (ν=0\nu = 0), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case (α=0\alpha = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided ν=O(α2)\nu = \mathcal{O}(\alpha^2), as α→0\alpha \to 0, extending the main result in [19]. Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime ν=O(α6/5)\nu = \mathcal{O}(\alpha^{6/5}), ν/α2→∞\nu/\alpha^2 \to \infty as α→0\alpha \to 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if α=O(ν3/2)\alpha = \mathcal{O}(\nu^{3/2}), as ν→0\nu \to 0. The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.Comment: 20pages,1figur

    On the subgrid-scale modeling of compressible turbulence

    Get PDF
    A subgrid-scale model recently derived for use in the large-eddy simulation of compressible turbulent flows is examined from a fundamental theoretical and computational standpoint. It is demonstrated that this model, which is applicable only to compressible turbulent flows in the limit of small density fluctuations, correlates somewhat poorly with the results of direct numerical simulations of compressible isotropic turbulence at low Mach numbers. An alternative model, based on Favre-filtered fields, is suggested which appears to reduce these limitations

    Toward the large-eddy simulation of compressible turbulent flows

    Get PDF
    New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96(exp 3) grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence (conducted on a coarse 32(exp 3) grid) is shown to yield results that are in excellent agreement with the fine grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly
    • …
    corecore